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Abstract. For chains of regular injectionsAp ⊂ Ap−1 ⊂ · · · ⊂ A1 ⊂ A0 of Hopf algebras
the sets of maximal extended Jordanian twists{FEk } are considered. We prove that under certain
conditions there exists forA0 the twistFBk≺0 composed of the factorsFEk . The general construction
of a chain of twists is applied to the universal envelopingsU(g) of classical Lie algebrasg. We
study the chains for the infinite seriesAn,Bn andDn. The properties of the deformation produced
by a chainU(g)FBk≺0

are explicitly demonstrated for the case ofg = so(9).

1. Introduction

The triangular Hopf algebras and twists (they preserve the triangularity [1, 2]) play an important
role in quantum group theory and applications [3–5]. Very few types of twists were written
explicitly in a closed form. The well known example is the Jordanian twist (J T ) of the
Borel algebraB(2) ({H,E|[H,E] = E}) with r = H ∧ E [6] where the triangularR-matrix
R = (8J )218J

−1 is defined by the twisting element [7, 8]

8J = exp{H ⊗ σ } (1.1)

with σ = ln(1 +E). In [9] it was shown that there exist different extensions (ET ’s) of this
twist. Using the notion of a factorizable twist [10], the elementFE ∈ U(sl(N))⊗2,

FE = 8E8J =
(N−2∏
i=2

8Ei

)
8J = exp

{
2ξ

N−1∑
i=2

E1i ⊗ EiNe−σ̃
}

exp{H ⊗ σ̃ } (1.2)

was proved to satisfy the twist equation, whereE = E1N , H = E11 − ENN is one of the
Cartan generatorsH ∈ h(sl(N)), σ̃ = 1

2 ln(1 + 2ξE) and{Eij }i,j=1,...,N is the standardgl(N)
basis.

Any subset of exponentials{8Ei | i = 2, . . . , N − 2} can be used to form an extended
twist like (1.2). This means that similar extended twistings can be applied to different algebras
with similar structure. In this particular case it is not difficult to explain this effect: the factors
8Ei commute and the subalgebras where they are defined (the carrier subalgebras [8]) intersect
by the central elementE.

LetA be a Hopf algebra,B andC be its subalgebras such that they are carriers for twists
FB andFC , respectively. It is important to know under what conditions the sequenceFCFB
provides a new twisting element and what are its properties. In this paper we study the
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possibility to compose extended twists for the universal enveloping algebras of classical Lie
algebras.

In section 2 we present a short list of basic relations for twists. The general properties
of extended twists are displayed in section 3. The sufficient conditions for the existence of
a composition of twists defined for subalgebras are formulated in section 4. In section 5 the
same problem is solved for chains of subalgebras. It is proved that the corresponding chains of
twistsFBk≺0 exist in classical Lie algebras of the seriesA,B andD. Using the regular injection
An−1 −→ Cn one can implement intoU(Cn) a chain typical forAn−1. Such improper chains
are studied in section 6. The properties of twisting performed by a chainFBk≺0 are illustrated

by the explicit example of a deformationU(so(9))
FBk≺0−→UFBk≺0

(so(9)) presented in section 7.
We conclude with some brief remarks about the possible multiparametrization of chains and
the corresponding deformations.

2. Basic definitions

In this section we remind the reader briefly of the basic properties of twists.
A Hopf algebraA(m,1, ε, S) with multiplicationm:A ⊗ A → A, coproduct1:A →

A ⊗ A, counitε:A → C and antipodeS:A → A can be transformed [1] by an invertible
(twisting) elementF ∈ A ⊗ A, F = ∑

f
(1)
i ⊗ f (2)i , into a twisted oneAF (m,1F , ε, SF ).

This Hopf algebraAF has the same multiplication and counit but the twisted coproduct and
antipode given by

1F (a) = F1(a)F−1 SF (a) = vS(a)v−1 (2.1)

with

v =
∑

f
(1)
i S(f

(2)
i ) a ∈ A.

The twisting element has to satisfy the equations

(ε ⊗ id)(F) = (id ⊗ ε)(F) = 1 (2.2)

F12(1⊗ id)(F) = F23(id ⊗1)(F). (2.3)

The first one is just a normalization condition and follows from the second relation modulo a
non-zero scalar factor.

If A is a Hopf subalgebra ofB the twisting elementF satisfying (2.2) and (2.3) induces
the twist deformationBF of B. In this case one can puta ∈ B in all the formulae (2.1).
This will completely define the Hopf algebraBF . LetA andB be the universal enveloping
algebras:A = U(l) ⊂ B = U(g) with l ⊂ g. If U(l) is the minimal subalgebra on whichF
is completely defined asF ∈ U(l)⊗ U(l) thenl is called the carrier algebra forF [8].

The composition of appropriate twists can be defined asF = F2F1. Here the element
F1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, whileF2

must be its solution for1F1 of the algebra twisted byF1.
If the initial Hopf algebraA is quasitriangular with the universal elementR then so is the

twisted oneAF (m,1F , ε, SF ,RF ) with

RF = F21RF−1. (2.4)

Most of the explicitly known twisting elements have the factorization property with respect
to comultiplication

(1⊗ id)(F) = F23F13 or (1⊗ id)(F) = F13F23
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and

(id ⊗1)(F) = F12F13 or (id ⊗1)(F) = F13F12.

To guarantee the validity of the twist equation, these identities are to be combined with the
additional requirementF12F23 = F23F12 or the Yang–Baxter equation onF [10, 11].

An important subclass of factorizable twists consists of elements satisfying the equations

(1⊗ id)(F) = F13F23 (2.5)

(id ⊗1F )(F) = F12F13. (2.6)

Apart from the universalR-matrixR that satisfies these equations for1F = 1op (1op = τ ◦1,
whereτ(a⊗b) = b⊗a) there are two more well developed cases of such twists: the Jordanian
twist of the Borel algebraB(2)whereFj has the form (1.1) (see [7]) and the extended Jordanian
twists (see [9, 12, 13] for details).

According to the result by Drinfeld [2] skew (constant) solutions of the classical Yang–
Baxter equation (CYBE) can be quantized and the deformed algebras thus obtained can
be presented in the form of twisted universal enveloping algebras. On the other hand,
such solutions of CYBE can be connected with the quasi-Frobenius carrier subalgebras
of the initial classical Lie algebra [14]. A Lie algebrag(µ), with the Lie composition
µ, is called Frobenius if there exists a linear functionalg∗ ∈ g∗ such that the form
b(g1, g2) = g∗(µ(g1, g2)) is non-degenerate. This means thatg must have a non-degenerate
2-coboundaryb(g1, g2) ∈ B2(g,K). The algebra is called quasi-Frobenius if it has a non-
degenerate 2-cocycleb(g1, g2) ∈ Z2(g,K) (not necessarily a coboundary). The classification
of quasi-Frobenius subalgebras insl(n) was given in [14].

The deformations of quantized algebras include the deformations of their Lie bialgebras
(g, g∗). Let us fix one of the constituentsg∗1(µ

∗
1) (with compositionµ∗1) and deform it in the

first order,

(µ∗1)t = µ∗1 + tµ∗2
its deforming functionµ∗2 is also a Lie product and the deformation property becomes
reciprocal:µ∗1 can be considered as a first-order deforming function for the algebrag∗2(µ

∗
2). Let

g(µ) be a Lie algebra that forms Lie bialgebras with bothg∗1 andg∗2. This means that we have a
one-dimensional family{(g, (g∗1)t )} of Lie bialgebras and correspondingly a one-dimensional
family of quantum deformations{At (g, (g∗1)t )} [15]. This situation provides the possibility
to construct in the set of Hopf algebras a smooth curve connecting quantizations of the type
A(g, g∗1) with those ofA(g, g∗2). Such smooth transitions can involve contractions provided
µ∗2 ∈ B2(g∗1, g

∗
1). This happens in the case ofJ T , ET and some other twists (see [16] and

references therein).

3. Extended twists

Extended Jordanian twists are associated with the set{L(α, β, γ, δ)α+β=δ} of Frobenius
algebras [9, 12]

[H,E] = δE [H,A] = αA [H,B] = βB
[A,B] = γE [E,A] = [E,B] = 0 α + β = δ. (3.1)

For limit values ofγ andδ the structure ofL degenerates. For the internal (non-zero) values of
γ andδ the twists associated with the correspondingL’s are equivalent. It is sufficient to study
the one-dimensional subvarietyL = {L(α, β)α+β=1}, that is to consider the carrier algebras

[H,E] = E [H,A] = αA [H,B] = βB
[A,B] = E [E,A] = [E,B] = 0 α + β = 1.

(3.2)
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The corresponding group 2-cocycles (twists) are

FE(α,β) = 8E(α,β)8j (3.3)

or

FE ′(α,β) = 8E ′(α,β)8j (3.4)

with

8j = exp{H ⊗ σ }
8E(α,β) = exp{A⊗ Be−βσ }
8E ′(α,β) = exp{−B ⊗ Ae−ασ }.

(3.5)

Twists (3.3) and (3.4) define the deformed Hopf algebrasLE(α,β) with the costructure

1E(α,β) (H) = H ⊗ e−σ + 1⊗H − A⊗ Be−(β+1)σ

1E(α,β) (A) = A⊗ e−βσ + 1⊗ A
1E(α,β) (B) = B ⊗ eβσ + eσ ⊗ B
1E(α,β) (E) = E ⊗ eσ + 1⊗ E = E ⊗ 1 + 1⊗ E +E ⊗ E

(3.6)

andLE ′(α,β) defined by

1E ′(α,β) (H) = H ⊗ e−σ + 1⊗H +B ⊗ Ae−(α+1)σ

1E ′(α,β) (A) = A⊗ eασ + eσ ⊗ A
1E ′(α,β) (B) = B ⊗ e−ασ + 1⊗ B
1E ′(α,β) (E) = E ⊗ eσ + 1⊗ E = E ⊗ 1 + 1⊗ E +E ⊗ E.

(3.7)

The sets{LE(α,β)} and {LE ′(α,β)} are equivalent due to the Hopf isomorphismLE(α,β) ≈
LE ′(β,α):

{LE(α, β)} ≈ {LE ′(α, β)} ≈ {LE(α > β)} ∪ {LE ′(α > β)}. (3.8)

So, it is sufficient to use only one of the extensions either8E(α,β) or8E ′(α,β), or a half of the
domain for(α, β).

The setL = {L(α, β)α+β=1} is just the family of four-dimensional Frobenius algebras that
one finds inU(sl(N)) [14].

4. Sequences of twists

Consider again the formula (1.2) (from now on we use a basis normalized as in (3.2), so here
H = 1

2(E11− ENN)),

FE =
(N−1∏
i=2

8Ei

)
8J =

(N−1∏
i=2

exp
{
E1i ⊗ EiNe−

1
2σ
})

exp{H ⊗ σ }. (4.1)

In the product of exponentials each factor8Er is itself a twisting element for the Hopf algebra
previously twisted by(

∏r−1
i=2 8Ei )8J . This is a very simple example of a chain of twists. All

the factors8Ei commute and the corresponding twistings can be performed in an arbitrary
order. Nevertheless, as we shall see this construction plays an important role in composing
non-trivial chains.
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The previous example also demonstrates that it is worth searching the conditions which
will guarantee that each member of a sequence of elements of the type8Ei is the solution of
equations (2.3) for coproducts defined by all the previous twists of the sequence.

One of the obvious solutions to this problem can be formulated as follows.

Proposition 1. LetA be a Hopf algebra,B andC be its subalgebras such that they are carriers
for twistsFB andFC , respectively. LetFB commute with1C. ThenC is stable with respect to
FB, FC is a twisting element forAFB and the compositionFCFB is a twisting element forA.

In the previous exampleB andC were the Heisenberg subalgebras insl(N) intersecting by
the elementE1N . The other trivial case is whenA contains the direct sumB ⊕ C. In the next
section we shall study some non-trivial cases typical for the universal enveloping classical Lie
algebras.

5. Chains

For the classical Lie algebras there exists the possibility of constructing sequences of carrier
subalgebras systematically.

Proposition 2. LetA be a Hopf algebra and

Ap ⊂ Ap−1 ⊂ · · · ⊂ A1 ⊂ A0 ≡ A (5.1)

a sequence of Hopf subalgebras such that

Bk ⊂ Ak k = 0, 1, . . . , p (5.2)

are the carrier subalgebras for twisting elementsFBk . LetFBk commute with1Ak+1:

FBk1Ak+1 = 1Ak+1FBk . (5.3)

Then for anyk = 0, 1, . . . , p the composition

FBk≺0 ≡ FBkFBk−1 . . .FB0 (5.4)

is a twisting element forA.

Now we shall show how this scheme can be realized for the universal enveloping algebras
U(g) for classical Lie algebrasg (U(g) is considered here as a Hopf algebra with primitive
comultiplication of generators). The construction will be similar for the classical seriesAn,
Bn andDn. In the case of symplectic algebrasCn the chain would not be completely proper
and we shall treat this situation separately.

Let us consider the following sequences of Hopf algebras:

U(sl(N)) ⊃ U(sl(N − 2)) ⊃ · · · ⊃ U(sl(N − 2k)) ⊃ · · · for AN−1 (5.5)

U(so(2N)) ⊃ U(so(2(N − 2)) ⊃ · · · ⊃ U(so(2(N − 2k)) ⊃ · · · for DN (5.6)

U(so(2N + 1)) ⊃ U(so(2(N − 2) + 1) ⊃ · · · ⊃ U(so(2(N − 2k) + 1) ⊃ · · · for BN.

(5.7)

We want to show that for these sequences there exist the sets of maximalET ’s with the
properties listed in proposition 2. In each elementAk of the sequences let us choose the
‘initial’ root λk0. All the roots are equivalent in seriesA andD, but in seriesB one of the long
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roots must be chosen (this will be justified later). For definiteness we fix the following choice
(all the roots are written in thee-basis):

λk0 =


e1− e2 for sl(N − 2k)

e1 + e2 for so(2(N − 2k))

e1 + e2 for so(2(N − 2k) + 1).

(5.8)

Consider the set of roots orthogonal toλk0. They form the subsystems for the following
subalgebras inAk:

sl(M − 2) ⊂ sl(M) (5.9)

so(2M − 4)⊕ sl(2) ⊂ so(2M) (5.10)

so(2M − 3)⊕ sl(2) ⊂ so(2M + 1). (5.11)

Notice that in all the cases (5.9)–(5.11) the corresponding universal enveloping algebras contain
Ak+1.

For eachAk let us form the setπk of rootsλ that are constituent for the initial rootλk0, i.e.

πk =
{
λ′, λ′′ | λ′ + λ′′ = λk0; λ′ + λk0, λ′ + λk0 6∈ 3A

}
. (5.12)

For each elementλ′ ∈ πk one can indicate the rootλ′′ ∈ πk such thatλ′ + λ′′ = λk0. Let us
consider the ordered pairs(λ′, λ′′) and decomposeπk according to its main property

πk = π ′k ∪ π ′′k
π ′k = {λ′} π ′′k = {λ′′}.

(5.13)

For the sequences we are dealing with these sets are

{λ′l , λ′′l } =


{{(e1− el)}, {(el − e2)}}l=3,4,...,M for sl(M)

{{(e1± el)}, {(e2 ± el)}}l=3,4,...,M for so(2M)

{{e1, (e1± el)}, {e2, (e2 ± el)}}l=3,4,...,M for so(2M + 1).

(5.14)

The important observation is that the generatorsLλ′ andLλ′′ for λ′ ∈ π ′k andλ′′ ∈ π ′′k form
the bases for the spaces of conjugated defining representations of the subalgebrasAk+1 ⊂ Ak
(with respect to the adjoint action). These subrepresentations are{(
M − 2

)
,
(
M − 2

)∗}
for U(sl(M − 2)) ⊂ U(sl(M)) (5.15){(

2(M − 2)
)
,
(
2(M − 2)

)}
for U(so(2(M − 2))) ⊂ U(so(2M)) (5.16){(

2M − 3)
)
,
(
2M − 3)

)}
for U(so(2M − 3)) ⊂ U(so(2M + 1)). (5.17)

Notice that any generatorLλ (λ ∈ πk) commutes withLλk0 and with all the other elements
{Lµ|µ ∈ πk} except its counterpart—the generatorLλk0−λ. Together withLλ we shall consider

the Cartan generatorHλk0 dual to the initial root (its functional(Hλk0)
∗ is proportional toλk0).

To simplify the expressions we shall use the fact that in any classical Lie algebra there exists a
basis where the structure constants for the generators{Lλ,Hλk0|λ ∈ πk} can be normalized to
form the following compositions:[

Hλk0, Lλ
′
] = 1

2Lλ′[
Hλk0, Lλ

k
0−λ′

] = 1
2Lλk0−λ′[

Lλ′ , Lλk0−λ′
] = Lλk0

[
Lλk0, Lλ

′
] = [Lλk0, Lλk0−λ′] = 0[

Hλk0, Lλ
k
0

] = Lλk0
λ′ ∈ π ′k λk0 − λ′ ∈ π ′′k .

(5.18)
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In the example considered in section 7 we present the explicit realizations for the generators
of Ak that fit the relations above.

The relations (5.18) show that for every triple of roots
{
λ′, λk0 − λ′, λk0

}
we have the

subalgebraLλ
′
(α, β) with α = β = 1

2 (see (3.2)). The set of generators{
Lλ|λ∈πk , Lλk0, Hλk0

}
(5.19)

define a subalgebraBk ⊂ Ak.
Let us perform inAk the Jordanian twist

8Jk = exp{Hλk0 ⊗ σ k0 } (5.20)

with σ k0 = ln(1 +Lλk0). In the twisted algebra(Ak)8Jk the subalgebras
{
Lλ

′( 1
2,

1
2

) | λ′ ∈ π ′k}
described above obviously obey the conditions of proposition 1 and the corresponding sequence
of twists

8Ek =
∏
λ′∈π ′k

8Eλ′ =
∏
λ′∈π ′k

exp
{
Lλ′ ⊗ Lλk0−λ′e−

1
2σ

k
0
}

(5.21)

can be performed in it. This gives for eachAk the followingET element:

FBk = 8Ek8Jk =
(∏
λ′∈π ′k

8Eλ′

)
8Jk . (5.22)

The sets of algebrasAk presented in (5.5)–(5.7) together with their subalgebrasBk (defined
by the basic families (5.19)) form the correlated sequences of subalgebras that satisfy the
conditions of proposition 2. To prove this let us consider the adjoint representation ad(A0) ≡ d0

and its restrictions to the subalgebrasAk: dk = ad(A0)|Ak . The space ofBk is invariant with
respect todk+1. It contains the subspaces of two trivial subrepresentations (generated byLλk0 and
Hλk0). This means that theJ T factor8Jk commutes with the algebra1(Ak+1) ⊂ Ak+1⊗Ak+1.
The other two invariant subspaces inBk refer to the fundamental representations ofAk+1

indicated in (5.15)–(5.17). Due to the commutation relations inBk the element ln8Ek can be
written as (∑

λ′∈π ′k
Lλ′ ⊗ Lλk0−λ′

)
e−

1
2σ

k
0 . (5.23)

With the ordered pairs of roots as in (5.14) this expression isdk+1-invariant (the converted bases
for conjugated representations modulo the scalar factor). We have arrived at the conclusion
that the sets of subalgebrasAk (equations (5.5)–(5.7)) andBk (defined by (5.12), (5.14)
and (5.19)) with the twisting elementsFBk (5.22) satisfy the conditions of proposition 2.
Thus for any classical simple Lie algebra of the seriesA, B andD the chains of twists
FBk≺0 ≡ FBkFBk−1 . . .FB0 (k = 0, 1, . . . , p) exist.

The twisting element for a chain can be written explicitly as

FBk≺0 =
∏
λ′∈π ′k

(
exp

{
Lλ′ ⊗ Lλk0−λ′e−

1
2σ

k
0
})

exp
{
Hλk0 ⊗ σ k0

}
×

∏
λ′∈π ′k−1

(
exp

{
Lλ′ ⊗ Lλk−1

0 −λ′e
− 1

2σ
k−1
0
})

exp
{
Hλk−1

0
⊗ σ k−1

0

}
...

×
∏
λ′∈π ′0

(
exp

{
Lλ′ ⊗ Lλ0

0−λ′e
− 1

2σ
0
0
})

exp
{
Hλ0

0
⊗ σ 0

0

}
. (5.24)



8678 P P Kulish et al

Any number of exponential factors can be cut out from the left. The remaining part always
conserves the property of the twisting element for the corresponding classical Lie algebra.
When on the left-hand side one has a product of extensions that is not complete (not allλ′ ∈ π ′k
are used),

FE2FB(k−1)≺0 =
∏

λ′∈2⊂π ′k

(
exp

{
Lλ′ ⊗ Lλk0−λ′e−

1
2σ

k
0
})

exp{Hλk0 ⊗ σ k0 }FBk−1 · · ·FB0 (5.25)

the subalgebraAk+1 will be twisted non-trivially by such an element. In this case the twisting
deformation withFBk+1 (of the (5.22) type) cannot be applied toAFE2FBk≺0

. The necessary
primitivization of generators inAk+1 is regained when the product of extensions is complete
and forms an invariant of the representationdk+1. We call this the ‘matreshka’ effect.

QuantizationsAFBp≺0
of classical Lie algebras produce the chains ofR-matrices:

RBp≺0 = (FBp )21(FBp−1)21 . . . (FB0)21F−1
B0
. . .F−1

Bp−1
F−1
Bp . (5.26)

The explicit expressions in terms of generators can be obtained by substituting the elements
Lλ andHλk0 in (5.24) by the corresponding generators according to the prescription of roots in
(5.8) and (5.14).

If the deformation parameter is introduced (as in (1.2)) the chains of classicalr-matrices
can be extracted from (5.26):

rBp≺0 =
∑

k=0,1,...,p

(
Hλk0 ∧ Lλk0 +

∑
λ′∈πk

Lλ′ ∧ Lλk0−λ′
)
. (5.27)

With the obvious modifications of factors (summands) the sequences ofR-matrices
(classicalr-matrices) for incomplete chains of twists can also be written.

6. Improper chains. Symplectic algebras

Imposing additional conditions on the internal structure of the Hopf algebras involved one
can minimize the algebraA0 on which the chain is based to the universal enveloping algebra
Acar

0 ≡ U(gcar
0 ) of the carrier of the chain. This happens, for example, wheng0 inA0 = U(g0)

is a sequence of semidirect sums and everyBk is aBk+1-module with respect to the adjoint
action (ing0),

g
car
0 = g0 = Bp ` (Bp−1 ` (· · · ` B0) · · ·)[
Bk+1,Bk

] ⊂ Bk. (6.1)

In this case one can define the subalgebrasAcar
k as

U(gcar
k ) = U(Bp ` (Bp−1 ` (· · · ` Bk) · · ·)). (6.2)

In the sequences of classical algebras that we considered in (5.5)–(5.7) the conditions (6.1) are
fulfilled (with Bk defined by (5.19)). One can rewrite the sequences (5.1) for the classical Lie
algebras so that the elementsAk will be substituted byAcar

k ≡ U(gcar
k ) defined by (6.2) andgcar

0
will be the carrier ofFBp≺0. There rests some freedom in choosing the initial root. Using it one
can, in particular, place the carrier of the chain in the Borel subalgebra of the corresponding
classical Lie algebra. For example, in the case ofsl(N) the carrier subalgebra of the full chain
of the type (5.24) can be arranged to contain all the generators with the positive root vectors
and a part of the Cartan subalgebra (spanned byH1,N ,H2,N−1, . . .).

For simple Lie algebras the chain carrier subalgebra covers only a proper subspace of an
algebra. The chainsFBp≺0 that we described in the previous section are maximal in the sense
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thatAcar
0 is a maximal Frobenius subalgebra in the corresponding classical Lie algebra that can

be composed from the subalgebras of the type (5.18) (that is, using8Ek and8Jk as elementary
blocks). These chains are also specific for the simple algebras we are dealing with. In each of
the three cases (equations (5.5)–(5.7)) the individual properties of the root system are used to
form a chain.

The universal enveloping algebras for other simple Lie algebras (the seriesCN and the
exceptional algebras) do not refer to the class of algebras conserving symmetric forms (over
a field) and cannot be supplied by a specific chain of extended twists. Nevertheless, the
quantization by a chain can be performed in these algebras using the classical subalgebras of
the seriesA,B andD contained in them. For example, due to the inclusionsl(N) ⊂ sp(N)
the chain specific toU(sl(N)) can be used to quantizeU(sp(N)). Such chains can be called
improper.

Now we shall study the universal enveloping algebras for symplectic simple Lie algebras
(the seriesCN ) where the maximal chain appears to be improper. (It exploits almost exclusively
theAN−1 subalgebra inCN .) In thee-basis thesp(N) roots can be fixed as follows:

3sp(N) =
{
ei − ej for i 6= j
±(ei + ej ) for i 6 j

i, j = 1, 2, . . . , N. (6.3)

Whatever root will be chosen as the initial one the extensions will contain generators whose
roots will have the non-zero projections on the root system ofsp(N − 2).

Note that if we fix a short root to be the initial one, for exampleλ0
0 = ei − ej , there

will be pairs of constituent roots that do not satisfy the conditions (5.12). The generators
corresponding toλ′ = −2ej , λ′′ = ei + ej andλ0

0 do not form a subalgebra ofL(α, β) type.
Thus we are to consider the subalgebraA1 = U(sp(N − 2)). The generators corresponding
to π ′k andπ ′′k (5.12),

{ei ± el} and {−ej ± el} l = 3, . . . , N

form the bases for the defining representations ofsp(N − 2). The symplectic invariant∑
l

(Lei+el ⊗ L−ej−el − Lei−el ⊗ L−ej+el ) (6.4)

does not correlate with theET (3.5). Otherwise one can check that the extensions based
on linear combinations of the type (6.4) (with the coefficients inC[[σ ]]) violate the twist
equation (2.3).

We can diminish the subalgebraA1 and putA1 = U(sl(N−2)). In this case the summands∑
l Lei+el ⊗L−ej−el and

∑
l Lei−el ⊗L−ej+el in (6.4) will be separately invariant with respect to

A1 and both will match with the sequences of extensions (3.5). In such a way we can proceed
by constructing the chain of extended twists forU(sp(N)) but this will be specific forAn
rather than for theCn root system (except that the long root can be chosen to be the first initial
root).

7. Example. Maximal chain forU (so(9))

To illustrate the properties of chains we apply the algorithm presented in sections 5 and 6 to
construct a chain ofET ’s for the algebraU(so(9)).

In this case the sequence (5.7) consists of two elements:

A1 ⊂ A0 = so(9) ⊃ so(5) (7.1)
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with the initial roots

λ0
0 = e1 + e2 λ1

0 = e3 + e4

and the corresponding sets of constituent roots

π ′0 = {λ0′} = {e1, e1± e3, e1± e4}
π ′′0 = {λ0′′} = {e2, e2 ± e3, e2 ± e4}
π ′1 = {λ1′} = {e3}
π ′′1 = {λ1′′} = {e4}.

The rootsπ ′0 andπ ′′0 form the weight diagrams for the vector representations ofA1 = so(5).
Together with the Cartan generatorsHλ0

0
, Hλ1

0
the basic elementsEλ0

0
, Eλ1

0
and{Eλ|λ ∈

π0 ∪ π1} form the 16-dimensional subalgebragcar
0 ⊂ g0 = so(9). It has the structure of a

semidirect sumgcar
0 ≈ B1 ` B0. This means that studying this chain we can restrict ourselves

to the subalgebraU(gcar
0 ).

The maximal chain for the sequence (7.1) has the following structure:

FB1≺0 = 8E18J18E08J0 = 8Ee38J1

(∏
λ′∈π ′0

8Eλ′

)
8J0. (7.2)

The generators ofg0 can be expressed in terms of the antisymmetric Okubo matricesMik:

L12 =


H12 = (−i/2)(M12 +M34)

E1 = M29− iM19 E2 = M49− iM39

E1+2 = −M24 + iM23 + iM14 +M13,

E1+3 = −M26 + iM25 + iM16 +M15

E1+4 = −M28 + iM27 + iM18 +M17

E2+3 = −M46 + iM45 + iM36 +M35

E2+4 = −M48 + iM47 + iM38 +M37

E1−3 = −M26− iM25 + iM16−M15

E1−4 = −M28− iM27 + iM18−M17

E2−3 = −M46− iM45 + iM36−M35

E2−4 = −M48− iM47 + iM38−M37

L34 =


H34 = (−i/2)(M56 +M78),

E3 = M69− iM59 E4 = M89− iM79

E3+4 = −M68 + iM67 + iM58 +M57.

(7.3)

Here the lower indices of the generatorsE indicate the correspondingso(9) roots. The set of
generatorsL12 (L34) forms the four-dimensional subalgebra of the typeL

(
1
2,

1
2

)
withE = E1+2

(E = E3+4).
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The explicit expressions for the main factors of the chain in this basis are as follows:

8J0 = exp(H12⊗ σ12) 8J1 = exp(H34⊗ σ34)

8E0 = exp
(
(E1⊗ E2 + 1

2(E1−3⊗ E2+3 +E1+3⊗ E2−3

+E1−4⊗ E2+4 +E1+4⊗ E2−4))(1⊗ e−
1
2σ12)

)
8E1 = exp(E3⊗ E4e−

1
2σ34)

(7.4)

with

σ12 = σ 0
0 = ln(1 +E1+2)

σ34 = σ 1
0 = ln(1 +E3+4).

After the first Jordanian twisting,

Acar
0

8J0−→(Acar
0 )J0

the subalgebra

L34 = B1 ⊂ A
remains primitive. The carrier subalgebra for8J0 acquires the coproducts

1J0(H12) = H12⊗ e−σ12 + 1⊗H12

1J0(E1+2) = E1+2⊗ eσ12 + 1⊗ E1+2.
(7.5)

The coproducts for the remaining generators ofB0 are of the form

1J0(E) = E ⊗ e
1
2σ12 + 1⊗ E. (7.6)

Among the exponential factors8Eλ′ of the extension8E0 (see (7.2)) there is one (8Ee1)
that does not touch the subalgebraL34. Each of the rest{8Eλ′|λ′=e1±e3,e1±e4} being applied
separately produces a non-trivial deformation ofL34. These extensions can be combined to
form theso(5)-invariant (see (7.4)). In this case, i.e. after the twisting

(Acar
0 )J0

8E0−→(Acar
0 )E0J0

the primitivity of generators inL34 is restored. The coproducts for the generators of(B0)E0J0

are deformed according to the general rule (see section 2),

1E0J0(Eλ′) = Eλ′ ⊗ e−
1
2σ12 + 1⊗ Eλ′

1E0J0(Eλ0
0−λ′) = Eλ0

0−λ′ ⊗ e
1
2σ12 + eσ12 ⊗ Eλ0

0−λ′

1E0J0(Eλ0
0
) = Eλ0

0
⊗ eσ12 + 1⊗ Eλ0

0

1E0J0(H12) = H12⊗ e−σ12 + 1⊗H12− E1⊗ E2e−
3
2σ12

− 1
2

∑
λ′=e1±e3,e1±e4

Eλ′ ⊗ Eλ0
0−λ′e

− 3
2σ12.

(7.7)

Due to the ‘matreshka’ effect, the second Jordanian twist can be applied to(Acar
0 )E0J0

(Acar
0 )E0J0

8J1−→(Acar
0 )J1E0J0.

This leads to the following deformations:
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• the subalgebraB1 acquires the well known twisted form with the defining coproducts

1J1E0J0(H34) = H34⊗ e−σ34 + 1⊗H34

1J1E0J0(E3+4) = E3+4⊗ eσ34 + 1⊗ E3+4

1J1E0J0(Ek) = Ek ⊗ e
1
2σ34 + 1⊗ Ek k = 3, 4

(7.8)

• the subalgebra(L12)E0J0 rests untouched,

(L12)E0J0 = (L12)J1E0J0

• for each{λ = ei ± ek | i = 1, 2; k = 3, 4} the following substitution is performed in the
coproducts for the generatorsEλ:

Eλ ⊗ f (σ12) −→ Eλ ⊗ e±
1
2σ34f (σ12)

• in 1J1E0J0(Eλ) for each{λ = ei − ek | i = 1, 2; k = 3, 4} the additional term appears,

(−1)k+1H34e
(i−1)σ12 ⊗ Eei+eke−σ34

(here3= 4,4= 3);
• for the Cartan generatorH12 the coproduct becomes

1J1E0J0(H12) = H12⊗ e−σ12 + 1⊗H12− E1⊗ E2e−
3
2σ12

− 1
2E1+3⊗ E2−3e

1
2σ34− 3

2σ12 −H34E1+3⊗ E2+4e
− 1

2σ34− 3
2σ12

− 1
2E1+4⊗ E2−4e

1
2σ34− 3

2σ12 +H34E1+4⊗ E2+3e
− 1

2σ34− 3
2σ12

− 1
2E1−4⊗ E2+4e

− 1
2σ34− 3

2σ12 − 1
2E1−3⊗ E2+3e

− 1
2σ34− 3

2σ12.

The last twisting (that completes the chainB1≺0),

(Acar
0 )J1E0J0

8E1−→(Acar
0 )B1≺0 (7.9)

does not change the coproducts for the generators{Ei+k | i = 1, 2; k = 3, 4}. It produces the
ordinary transformation forL34,

1B1≺0(H34) = 1J1E0J0(H34) +E3⊗ E4e−
3
2σ34

1B1≺0(E3) = E3⊗ e−
1
2σ34 + 1⊗ E3

1B1≺0(E4) = E4⊗ e
1
2σ34 + eσ34 ⊗ E4.

The generatorsE1, E2, Ei−k andH12 are non-trivially twisted by the transformation (7.9),

1B1≺0(E1) = 1J1E0J0(E1)− E1+3⊗ E4e−
1
2σ34− 1

2σ12 − E3⊗ E1+4e
− 1

2σ34

1B1≺0(E2) = 1J1E0J0(E2)− E2+3⊗ E4e−
1
2σ34+ 1

2σ12 − E3eσ12 ⊗ E2+4e
− 1

2σ34

1B1≺0(E1−3) = 1J1E0J0(E1−3) + 2E1⊗ E4e−σ34− 1
2σ12

−E1+3⊗ E2
4e−

1
2σ12− 3

2σ34 − 2E3⊗ E4E1+4e
− 3

2σ34

1B1≺0(E2−3) = 1J1E0J0(E2−3) + 2E2⊗ E4e−σ34+ 1
2σ12

−E2+3⊗ E2
4e

1
2σ12− 3

2σ34 − 2E3eσ12 ⊗ E4E2+4e
− 3

2σ34

1B1≺0(E1−4) = 1J1E0J0(E1−4) + 2E3⊗ E1e−
1
2σ34 − E2

3 ⊗ E1+4e
−σ34 + 2E3⊗ E4E1+3e

− 3
2σ34

1B1≺0(E2−4) = 1J1E0J0(E2−4) + 2E3eσ12 ⊗ E2e−
1
2σ34

−E2
3eσ12 ⊗ E2+4e

−σ34 + 2E3eσ12 ⊗ E4E2+3e
− 3

2σ34
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1B1≺0(H12) = 1J1E0J0(H12) + (E1+3⊗ E2E4 +E3E1⊗ E2+4)1⊗ e−
1
2σ34− 3

2σ12

−(E1 +E1+4E3)⊗ E2+3E4e−σ34− 3
2σ12 + 1

2E1+3⊗ E2+3(E4)
2e−

3
2 (σ34+σ12)

−E1+4E3⊗ E2e−
3
2σ12 + 1

2E1+4(E3)
2⊗ E2+4e

− 1
2σ34− 3

2σ12.

These relations complete the description of the twisted Hopf algebra(Acar
0 )B1≺0. Using

the explicit expressions (7.4) for the chain factors one can reconstruct the Hopf algebra
U(so(9))B1≺0 containing(Acar

0 )B1≺0. Both of them are triangular with the universal element

RBk≺0 = (8E18J18E08J0)21(8E18J18E08J0)
−1.

The deformation parameter can be introduced so that the classicalr-matrix

rB1≺0 = H12∧ E1+2 +H34∧ E3+4 +E1 ∧ E2 +E3 ∧ E4

+1
2(E1−3 ∧ E2+3 +E1+3∧ E2−3 +E1−4 ∧ E2+4 +E1+4∧ E2−4)

determines the Lie–Poisson structure that was quantized explicitly by the chain of twistsFBk≺0.

8. Conclusions

Chains of twists provide a rich variety of new quantizations for a certain class of Lie algebras
described in proposition 2. As was demonstrated in [17] extended twists can be accompanied
by the special Reshetikhin twists which ‘rotate’ the roots of the carrier subalgebras for the
Jordanian factors. It is easy to check that such ‘rotations’ can also be applied in the case of
chains. The corresponding additional factorsFR = exp

((
Hλk−1

0
+ θ(Hλk−1

0
)⊥
) ⊗ σ k−1

0

)
(here

(Hλk−1
0
)⊥ is orthogonal toHλk0 andHλk−1

0
) can be included in eachFBk−1. It can be shown that

though the factor8Ek−1 must be changed its invariance properties with respect toBk can be
conserved. In this context the chains are flexible and their multiparametric versions can be
easily constructed.

The deformation parameters can be introduced in chains by rescaling the generators of the
subalgebraBk. It must be stressed that eachBk can be rescaled separately with an independent
variableξk. When all these rescaling factors are proportional to the deformation parameter
ξ , i.e. ξk = ξηk, then in the classical limit the parametersηk appear as the multipliers in the
classicalr-matrix (compare with (5.27)):

rBp≺0 =
∑

k=0,1,...,p

ηk

(
Hλk0 ∧ Lλk0 +

∑
λ′∈πk

Lλ′ ∧ Lλk0−λ′
)
.

The mechanisms described above can be combined together both leading to the
multiparametric versions of chains.

One of the consequences of proposition 2 is that for a large set of universal enveloping
algebras (includingA,B andD series of classical algebras), classicalr-matrices of the type
(5.27) exist. For the special case ofg = sl(N) they were first presented in [8]. As we have
shown above they originate from the specific properties of extended Jordanian twists, the
possibility to form chains for certain types of universal enveloping algebras.
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