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Abstract. For chains of regular injectiond,, C A,_1 C --- C A1 C Ap of Hopf algebras
the sets of maximal extended Jordanian twisfg, } are considered. We prove that under certain
conditions there exists fofo the twistF, _, composed of the factorg, . The general construction
of a chain of twists is applied to the universal envelopibyg) of classical Lie algebrag. We
study the chains for the infinite seridg, B, andD,.. The properties of the deformation produced
by a chainU(g);BRO are explicitly demonstrated for the casegof so(9).

1. Introduction

The triangular Hopf algebras and twists (they preserve the triangularity [1, 2]) play an important
role in quantum group theory and applications [3-5]. Very few types of twists were written
explicitly in a closed form. The well known example is the Jordanian twisI ) of the

Borel algebraB(2) ({H, E|[H, E] = E}) withr = H A E [6] where the triangulaR-matrix

R = (®4)1® ;1 is defined by the twisting element [7, 8]

®; =explH ® o} (1.1)

with o = In(1 + E). In [9] it was shown that there exist different extensiofig §) of this
twist. Using the notion of a factorizable twist [10], the elem&gte U (sI(N))®?,

N-2 N-1
Fe = CDgCDj = <1_[ q)gi>q>j = exp{2§ Z Ey® El‘Neg} exp{H ®5} (12)
i=2 i=2
was proved to satisfy the twist equation, whéte= E,y, H = E1; — Eyy is one of the
Cartan generatord € h(sI(N)),o = %In(l +2£F) and{E;;}; j=1..n is the standarg!(N)
basis.

Any subset of exponentialsbe, | i = 2,..., N — 2} can be used to form an extended
twist like (1.2). This means that similar extended twistings can be applied to different algebras
with similar structure. In this particular case it is not difficult to explain this effect: the factors
d.. commute and the subalgebras where they are defined (the carrier subalgebras [8]) intersect
by the central elemerit.

Let A be a Hopf algebra3 andC be its subalgebras such that they are carriers for twists
Fi and F¢, respectively. It is important to know under what conditions the sequ&pég
provides a new twisting element and what are its properties. In this paper we study the

yeeey

0305-4470/99/498671+14$30.00 © 1999 IOP Publishing Ltd 8671



8672 P P Kulish et al

possibility to compose extended twists for the universal enveloping algebras of classical Lie
algebras.

In section 2 we present a short list of basic relations for twists. The general properties
of extended twists are displayed in section 3. The sufficient conditions for the existence of
a composition of twists defined for subalgebras are formulated in section 4. In section 5 the
same problem is solved for chains of subalgebras. Itis proved that the corresponding chains of
twists Fp, , existin classical Lie algebras of the serigsB andD. Using the regular injection
A,_1 —> C, one can implement intt/ (C,)) a chain typical forA,_;. Such improper chains
are studied in section 6. The properties of twisting performed by a chaip are illustrated

FBiso

by the explicit example of a deformatidn(so(9)) — Ur,, ,(s0(9) presented in section 7.
We conclude with some brief remarks about the possible multiparametrization of chains and
the corresponding deformations.

2. Basic definitions

In this section we remind the reader briefly of the basic properties of twists.

A Hopf algebrad(m, A, €, S) with multiplicationm: A ® A — A, coproductA: A —
A ® A, counite: A — C and antipodes: A — A can be transformed [1] by an invertible
(twisting) elementF € A® A, F = Y. 1P ® 72, into a twisted oneds(m, Ar, €, Sx).
This Hopf algebrad s has the same multiplication and counit but the twisted coproduct and
antipode given by

Ar(a) = FA@)F L Sr(a) = vS(a)v? (2.1)
with
v="> fYS(#?) ac A
The twisting element has to satisfy the equations
(€ ®id)(F) = (id®e)(F) =1 (2.2)
F12(A ® id)(F) = Fas(id @ A)(F). (2.3)

The first one is just a normalization condition and follows from the second relation modulo a
non-zero scalar factor.

If Ais a Hopf subalgebra df the twisting elemenf satisfying (2.2) and (2.3) induces
the twist deformation3+ of B. In this case one can put € B in all the formulae (2.1).
This will completely define the Hopf algebiz-. Let. A andB be the universal enveloping
algebras:A = U(l) € B = U(g) with [ c g. If U(I) is the minimal subalgebra on which
is completely defined ag € U () ® U(l) thenl is called the carrier algebra far [8].

The composition of appropriate twists can be definedras F,F;. Here the element
F1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, While
must be its solution fon £, of the algebra twisted by.

If the initial Hopf algebraA is quasitriangular with the universal elemé@then so is the
twisted onedr(m, Ar, €, Sy, Rr) with

Rr=FnRF L (2.4)

Most of the explicitly known twisting elements have the factorization property with respect
to comultiplication

(A®id)(F) = FaaFis or (A ®id)(F) = FiaFos
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and
(id ® A)(F) = FioF13 or (id ® A)(F) = Fi3F12.
To guarantee the validity of the twist equation, these identities are to be combined with the

additional requirement; o F,3 = Fo3F12 Of the Yang—Baxter equation ¢ [10, 11].
An important subclass of factorizable twists consists of elements satisfying the equations

(A ®id)(F) = FiaFos (2.5)

(id @ Ax)(F) = FraF1s. (2.6)
Apart from the universak-matrix R that satisfies these equationsfor = A% (A? = toA,
wherer (¢ ® b) = b®a) there are two more well developed cases of such twists: the Jordanian
twist of the Borel algebr&(2) whereF; has the form (1.1) (see [7]) and the extended Jordanian
twists (see [9, 12, 13] for details).

According to the result by Drinfeld [2] skew (constant) solutions of the classical Yang—
Baxter equation (CYBE) can be quantized and the deformed algebras thus obtained can
be presented in the form of twisted universal enveloping algebras. On the other hand,
such solutions of CYBE can be connected with the quasi-Frobenius carrier subalgebras
of the initial classical Lie algebra [14]. A Lie algebggw), with the Lie composition
wu, is called Frobenius if there exists a linear functiogdl € g* such that the form
b(g1, g2) = g"(u(g1, g2)) is non-degenerate. This means thahust have a non-degenerate
2-coboundary (g1, g2) € B%(g, K). The algebra is called quasi-Frobenius if it has a non-
degenerate 2-cocycldgs, g2) € Z%(g, K) (not necessarily a coboundary). The classification
of quasi-Frobenius subalgebrassiin) was given in [14].

The deformations of quantized algebras include the deformations of their Lie bialgebras
(g, g*). Let us fix one of the constituengg(u]) (with compositionu}) and deform it in the
first order,

(M) = 3 +1ps
its deforming functionu} is also a Lie product and the deformation property becomes
reciprocal:u; can be considered as a first-order deforming function for the algébug). Let
g(w) be aLie algebra that forms Lie bialgebras with bgifandg}. This means that we have a
one-dimensional family(g, (g;),)} of Lie bialgebras and correspondingly a one-dimensional
family of quantum deformation§A, (g, (g3),)} [15]. This situation provides the possibility
to construct in the set of Hopf algebras a smooth curve connecting quantizations of the type
A(g, g3) with those ofA(g, g3). Such smooth transitions can involve contractions provided
wh € B2(g;, g5). This happens in the case g7, £7 and some other twists (see [16] and
references therein).

3. Extended twists

Extended Jordanian twists are associated with the{Bét, B, v, §)a+p=s} Of Frobenius
algebras [9,12]

[H,E] =8E [H, Al = aA [H, B] = BB
[A,B]=yE [E,A]=[E,B]=0 at B =34.
For limit values ofy ands the structure o degenerates. For the internal (non-zero) values of

y ands the twists associated with the correspondlrigare equivalent. Itis sufficient to study
the one-dimensional subvariefy= {L(«, 8)4+s=1}, that is to consider the carrier algebras

[H,E]=E [H, A] = aA [H, B] = BB
[A,B]=E [E, Al =[E,B] =0 a+f=1

(3.1)

(3.2)
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The corresponding group 2-cocycles (twists) are
Fe@.p) = Pep)Pj (3.3)
or
Fe@p = Pep®) (3.4)
with
®; =explH ® o}
Deip) = EXPA ® Be P7) (3.5)
Do p) = EXP—B @ Ae *7}.
Twists (3.3) and (3.4) define the deformed Hopf algeliras g, with the costructure
Asp (H)=H®e " +1® H— A® Be P
Acap (A) =A@ +1® A

3.6
At@p (B)=BRe +& QB (3.6)
Acap (E)=EQ& +1Q E=EQ®1+1QE+EQ®E
andLg¢ (g defined by
Asap (H)=H®e " +1® H+B ® Ae" @’
Aswp) (A)=AQE +& @A
E@.p) -

Ag/(a.ﬂ) (B)=B®97a6+1®3
Acip (E)=E®@E +1@ E=E®1+1Q E+EQ®E.

The sets{L¢,p)} and {Le@ )} are equivalent due to the Hopf isomorphisig s ~
Lepo):

{Le(a, B} = {Le (o, B)} = {Le(a = )} U {Le/(a = B)}. (3.8)

So, it is sufficient to use only one of the extensions eithgg, g) or ¢ (4, ), Or @ half of the
domain for(c, B).

The setl = {L(«, B)q+p=1} is just the family of four-dimensional Frobenius algebras that
one finds inU (s[(N)) [14].

4. Sequences of twists

Consider again the formula (1.2) (from now on we use a basis normalized as in (3.2), so here
H = 3(En1 — Eyn)),

N—-1 N—-1

Fe = (]‘[ q>5i>q>J = (]‘[ exp{Ey ® EiNe—%”}) expH ® o}. (4.1)
i=2 i=2

In the product of exponentials each factiey. is itself a twisting element for the Hopf algebra

previously twisted byﬂf;zl d )P ;. This is a very simple example of a chain of twists. All

the factors®,, commute and the corresponding twistings can be performed in an arbitrary

order. Nevertheless, as we shall see this construction plays an important role in composing

non-trivial chains.
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The previous example also demonstrates that it is worth searching the conditions which
will guarantee that each member of a sequence of elements of thétyjmethe solution of
equations (2.3) for coproducts defined by all the previous twists of the sequence.

One of the obvious solutions to this problem can be formulated as follows.

Proposition 1. Let.4 be a Hopf algebrai3 andC be its subalgebras such that they are carriers
for twists 5 and F¢, respectively. Lefz commute witlAC. ThenC is stable with respect to
Fi, Fe is a twisting element farl -, and the compositiotfe 75 is a twisting element fax.

In the previous examplg andC were the Heisenberg subalgebrasioV) intersecting by

the elemeniE;y. The other trivial case is whed contains the direct sui @ C. In the next
section we shall study some non-trivial cases typical for the universal enveloping classical Lie
algebras.

5. Chains

For the classical Lie algebras there exists the possibility of constructing sequences of carrier
subalgebras systematically.

Proposition 2. Let .4 be a Hopf algebra and

A, CA,1C---CACA=A (5.1)
a sequence of Hopf subalgebras such that

By C Ay k=0,1,....p (5.2)

are the carrier subalgebras for twisting elemerfig . Let 73, commute withA Ag.1:

FBk AAk+1 = AAk+1‘7'—Bk- (5.3)
Then foranyk =0, 1, ..., p the composition
FBrww = F,.FBiy - - - Fiio (5.4)

is a twisting element foA.

Now we shall show how this scheme can be realized for the universal enveloping algebras
U (g) for classical Lie algebrag (U (g) is considered here as a Hopf algebra with primitive
comultiplication of generators). The construction will be similar for the classical saries
B, andD,. In the case of symplectic algebr&s the chain would not be completely proper
and we shall treat this situation separately.

Let us consider the following sequences of Hopf algebras:

UGBIIN)DUGIIN —2)D---DU(I(N—2k)) D --- for Ay_1 (5.5)
UGo(2N)) DU (02N —2) D --- D U(s0(2(N —2k)) D -+ for Dy (5.6)
U@o@RN+1D))DU@Go02(IN—-2)+1) D ---DU(0(2(N—-2k)+1) D --- for By.

(5.7)

We want to show that for these sequences there exist the sets of maXirisalvith the
properties listed in proposition 2. In each elemght of the sequences let us choose the
‘initial’ root A%. All the roots are equivalent in seri@sand D, but in seriesB one of the long
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roots must be chosen (this will be justified later). For definiteness we fix the following choice
(all the roots are written in the-basis):
e1— e for sI(N — 2k)
A’é =1 e+en for so(2(N — 2k)) (5.8)
e1+es for so(2(N — 2k) +1).

Consider the set of roots orthogonaIAtgx They form the subsystems for the following
subalgebras itd;:

sI(M —2) C sl(M) (5.9
so(2M — 4) @ sl(2) C so(2M) (5.10)
so(2M — 3) ® sl(2) C so(2M + 1). (5.11)

Notice thatin all the cases (5.9)—(5.11) the corresponding universal enveloping algebras contain
A1
For each4, let us form the set; of rootsi that are constituent for the initial romg, i.e.

me={N AN =08 N HAG A S E Al (5.12)

For each elemenit’ € m; one can indicate the roat’ € m; such thatt’ + A = )J{). Let us
consider the ordered pai¢s’, A”) and decompose;. according to its main property

me=m, U

(5.13)
= w =)
For the sequences we are dealing with these sets are
{{(ex — e}, {(e1 — e2)}hi=34...m for sl(M)
(A, Ay = 4 Hller £ e}, {(ea £ e)}hi=za..m for so(2M) (5.14)
{{e1, (ex L e}, {ez, (e2 £ e)}thi=34...m for so(2M +1).

The important observation is that the generalgrsandL,- for 2’ € 7; andA” € 7’ form
the bases for the spaces of conjugated defining representations of the subalgebrasi,
(with respect to the adjoint action). These subrepresentations are

{(M=2), (M —2)} for U(si(M —2)) C U(sI(M)) (5.15)
{2 - 2)), (2(M — 2))} for U(so(2M —2))) C U(so(2M)) (5.16)
{(2M - 3)), (2M - 3))} for U(so(2M —3)) C U(so(2M +1)). (5.17)

Notice that any generatdt; (A € ;) commutes witthg and with all the other elements
{L,|n € m} exceptits counterpart—the generafgr_,. Together withL; we shall consider

the Cartan generatdi, dual to the initial root (its functionaﬂHké)* is proportional tarf).

To simplify the expressions we shall use the fact that in any classical Lie algebra there exists a
basis where the structure constants for the generglorsi;: |4 € mi} can be normalized to

form the following compositions:

[Hy, Ly] = 3Ly [Lyg. La]=[Lu, Lys_1] =0
[ngs Lxg—/\/] = %LA‘O'—A’ [ng, Lxg] = Lxg (5.18)

— / k "
(L, Lys_] = L A oem Ao — M emn].
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In the example considered in section 7 we present the explicit realizations for the generators
of A, that fit the relations above.
The relations (5.18) show that for every triple of rodts, 1§ — A’, A} we have the

subalgebrd* (a, B) with @ = B = § (see (3.2)). The set of generators

{Lyens Loty Hys ) (5.19)

define a subalgebig, C A.
Let us perform in4; the Jordanian twist

P, = expiHys ® ag) (5.20)

with o = In(1 +L,y). In the twisted algebraA)s, the subalgebrafL* (3, 2) | 1’ € 7;}
described above obviously obey the conditions of proposition 1 and the corresponding sequence
of twists

05 = [] ®er =[] exp{Ly ® Ly, 6727} (5.21)

’ ’ ’ ’
Mem, Mem,

can be performed in it. This gives for eadh the following€£7 element:

ka = (I)Skq)jk = (l_[ (DSA’><DJk' (522)

rer!
A em,

The sets of algebra4, presented in (5.5)—(5.7) together with their subalgeBgddefined
by the basic families (5.19)) form the correlated sequences of subalgebras that satisfy the
conditions of proposition 2. To prove this let us consider the adjoint representatidg)a do
and its restrictions to the subalgebrés d;, = ad(Ap)|4,. The space oB, is invariant with
respecttal;.1. Itcontains the subspaces oftwo trivial subrepresentations (generatgeddnyd
H,:). This means that thg 7 factor®; commutes with the algebra( A1) C A1 ® Ags1.
The other two invariant subspaces # refer to the fundamental representationsf.1
indicated in (5.15)—(5.17). Due to the commutation relations;ithe element I, can be
written as

(Z Ly ® Lxgw>e‘§"5. (5.23)
Nem;,
With the ordered pairs of roots as in (5.14) this expressidp.isinvariant (the converted bases
for conjugated representations modulo the scalar factor). We have arrived at the conclusion
that the sets of subalgebra% (equations (5.5)-(5.7)) an8l; (defined by (5.12), (5.14)
and (5.19)) with the twisting elements, (5.22) satisfy the conditions of proposition 2.
Thus for any classical simple Lie algebra of the seresB and D the chains of twists
Fbiw=F.FBy---FB, k=0,1,..., p) exist.

The twisting element for a chain can be written explicitly as
Fbpy = 1_[ (exp{Ly ® Lkg_we’%"é}) exp{ Hy; ® o5 |

)
Nem,

X 1_[ (exp{LN ® Lklé—l_)b,e_%"éil}) eXp{H)‘Sfl ® Ug_l}

"
Nem_y

x 1_[ (exp{Ly ® L,\g_,\,e‘%"g}) exp{ Hyg ® o} (5.24)

et
A emg
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Any number of exponential factors can be cut out from the left. The remaining part always
conserves the property of the twisting element for the corresponding classical Lie algebra.
When on the left-hand side one has a product of extensions that is not completeXhata]l

are used),

1k
FeoF Bu-yo = 1_[ (exp{Lk’ ® L}Lgfk’e 270 }) eXp{Hké ® Ug}FBA—l Ty (5.25)

Ne®cm

the subalgebrat;.1 will be twisted non-trivially by such an element. In this case the twisting
deformation with75,,, (of the (5.22) type) cannot be applied to-, ~, . The necessary
primitivization of generators imd;+1 is regained when the product of extensions is complete
and forms an invariant of the representatif. We call this the ‘matreshka’ effect.
Quantizationsalﬁw0 of classical Lie algebras produce the chain&kefatrices:

RE,o = (F8,)21(F5, o1 - (Fe)aF g, - - - gp{lfgpl. (5.26)

The explicit expressions in terms of generators can be obtained by substituting the elements
L andHAé in (5.24) by the corresponding generators according to the prescription of roots in
(5.8) and (5.14).

If the deformation parameter is introduced (as in (1.2)) the chains of clagsicatrices
can be extracted from (5.26):

Bo= Y. <Hxé AL+ Y LiA LAH) (5.27)
k=01,...p Ve

With the obvious modifications of factors (summands) the sequencégrohtrices
(classical-matrices) for incomplete chains of twists can also be written.

6. Improper chains. Symplectic algebras

Imposing additional conditions on the internal structure of the Hopf algebras involved one
can minimize the algebrdy on which the chain is based to the universal enveloping algebra
AG" = U(gg®) of the carrier of the chain. This happens, for example, wihén Ao = U (go)

is a sequence of semidirect sums and ev&rys a B+1-module with respect to the adjoint
action (ingp),

95" =0 =B, By (- Bo) )

(6.1)
[Bk+1, Bk] C By.
In this case one can define the subalgebt@$as
U@ =UBy = By-1 b (- =B+ ). (6.2)

In the sequences of classical algebras that we considered in (5.5)—(5.7) the conditions (6.1) are
fulfilled (with B, defined by (5.19)). One can rewrite the sequences (5.1) for the classical Lie
algebras so that the elementswill be substituted byA7®" = U (g;?") defined by (6.2) angg®
will be the carrier ofF;;, ,. There rests some freedom in choosing the initial root. Using it one
can, in particular, place the carrier of the chain in the Borel subalgebra of the corresponding
classical Lie algebra. For example, in the casd @V) the carrier subalgebra of the full chain
of the type (5.24) can be arranged to contain all the generators with the positive root vectors
and a part of the Cartan subalgebra (spannet by, Ho y_1, - . .).

For simple Lie algebras the chain carrier subalgebra covers only a proper subspace of an
algebra. The chaingj, , that we described in the previous section are maximal in the sense

p<0
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that A5 is a maximal Frobenius subalgebra in the corresponding classical Lie algebra that can
be composed from the subalgebras of the type (5.18) (that is, @sjrend® ;, as elementary
blocks). These chains are also specific for the simple algebras we are dealing with. In each of
the three cases (equations (5.5)—(5.7)) the individual properties of the root system are used to
form a chain.

The universal enveloping algebras for other simple Lie algebras (the g&yiesid the
exceptional algebras) do not refer to the class of algebras conserving symmetric forms (over
a field) and cannot be supplied by a specific chain of extended twists. Nevertheless, the
quantization by a chain can be performed in these algebras using the classical subalgebras of
the seriesA, B and D contained in them. For example, due to the inclusitiv) C sp(N)
the chain specific t&/ (s/(N)) can be used to quantiZé(sp(N)). Such chains can be called
improper.

Now we shall study the universal enveloping algebras for symplectic simple Lie algebras
(the serie€”y) where the maximal chain appears to be improper. (It exploits almost exclusively
the Ay_; subalgebrairCy.) In thee-basis thesp(N) roots can be fixed as follows:

e —e;j for i ;ﬁj o
Agpvy = i,j=12,...,N. (6.3)
+(e; +€j) for i< j

Whatever root will be chosen as the initial one the extensions will contain generators whose
roots will have the non-zero projections on the root systespoi — 2).

Note that if we fix a short root to be the initial one, for exampfe= ¢; — ¢;, there
will be pairs of constituent roots that do not satisfy the conditions (5.12). The generators
corresponding ta’ = —2e;, A" =¢; +e¢; andAS do not form a subalgebra df(«, 8) type.
Thus we are to consider the subalgeldia= U (sp(N — 2)). The generators corresponding
tozr; andr; (5.12),

{e; e} and {—e;j £ e} [=3,...,N
form the bases for the defining representationgpgfV — 2). The symplectic invariant

Z(Lei+el b L—ej—e, - Lei—e1 & L—e,»+e,) (64)
1

does not correlate with thé7 (3.5). Otherwise one can check that the extensions based
on linear combinations of the type (6.4) (with the coefficientlfis]]) violate the twist
equation (2.3).

We can diminish the subalgeh#a and putd; = U (s/(N —2)). Inthis case the summands
DL ®L_ooand) ) Lo, o ® L.+, in (6.4) will be separately invariant with respect to
A; and both will match with the sequences of extensions (3.5). In such a way we can proceed
by constructing the chain of extended twists tb¢sp(N)) but this will be specific forA,,
rather than for th&,, root system (except that the long root can be chosen to be the first initial
root).

7. Example. Maximal chain for U (so(9))

To illustrate the properties of chains we apply the algorithm presented in sections 5 and 6 to
construct a chain of 7's for the algebrd/ (so(9)).
In this case the sequence (5.7) consists of two elements:

A1 C Apg = 50(9) D so(b) (7.1)
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with the initial roots
Ag:el+e2 Aé:eg+e4
and the corresponding sets of constituent roots
7y ={A"} = {e1, e1 £ e3, €1 + e}
7y = (A%} = {e2, e £ e3, €2 + €4}
w1 = (A} = {ea)
7y = (A} = {ea).

The rootsry andsg form the weight diagrams for the vector representationd of= so(5).
Together with the Cartan generatdiso, H,: the basic elements;o, E;1 and{E; | €
7o U 71} form the 16-dimensional subalgemggr C go = so(9). It has the structure of a
semidirect sungg®" ~ By - Bo. This means that studying this chain we can restrict ourselves
to the subalgebr& (gg?").
The maximal chain for the sequence (7.1) has the following structure:

Fbro = P, @ Pey @iz, = (DfesCDJl( [1 q’fk’) P (7.2)

Nem
The generators gfy can be expressed in terms of the antisymmetric Okubo matWfges

Hip = (—1/2)(M12 + M3y4)
L2 =] E1 = My — Mg Ey = Myg— iM3
E1+2 = —Mp4+iMo3+iM1ig+ My3,

E143 = —Mpe+iMps+iMis+ Mis
E114= —Mpg+iMo7 +iMig+ M17
Eoy3= —Mag+ M5 +iMsze+ Mss
Eoya = —Mag+ iMa7 +iMzg + Ms7 7.3)
E1 3= —M —iMps+iMig — M1s
E1 4= —Mpg— iMp7+iMig — My7
Ey 3= —Muse— iMas+iMsze — Mss
Ez 4= —Musg—iMs7+iMsg — Mz7
Hzyq = (—i/2)(Msg + M7s),
L3 ={ E3 = Mgg — iMsg E4 = Mgy — iMq7g
E3zi4 = —Megg + Mgz + iMsg + Ms7.
Here the lower indices of the generatdtsndicate the corresponding (9) roots. The set of

generatord.*? (L34) forms the four-dimensional subalgebra of the tyi{é,, 1) with £ = E1.,
(E = E3+4).
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The explicit expressions for the main factors of the chain in this basis are as follows:

@ 7 = exp(H12 @ 012) Q5 = exp(Hzs ® 034)
Dg, = exp((E1 ® E2+ 3(E13® E243+ E143® Ez3
+E1_4 Q@ Epra+ E144® Ez_4))(1® 97%012)) (7.4)
Dg, = exXp(Es ® E4e29%)
with
o12 = 0§ =IN(L+ E14p)
034 = 03 = IN(L+ E314).
After the first Jordanian twisting,
A 8 (A,
the subalgebra
L*=BCcA
remains primitive. The carrier subalgebra by, acquires the coproducts
Ajp(Hip) = Ho®€ °2+1Q® Hip
Aj(E12) = E12® €2+ 1Q® E14a. (7.5)
The coproducts for the remaining generatorggfre of the form
Ap(E)=E®er™ +1Q E. (7.6)

Among the exponential factomBg;  of the extensionb, (see (7.2)) there is oneb(,,)
that does not touch the subalgelid'. Each of the rest ey |3/—eites.ertes ) D€ING applied
separately produces a non-trivial deformationZdf. These extensions can be combined to
form theso(5)-invariant (see (7.4)). In this case, i.e. after the twisting

Dg,
(Agar) Jo — (Agar) &Eodo

the primitivity of generators ir.34 is restored. The coproducts for the generator&3gf«, s,
are deformed according to the general rule (see section 2),

Ac‘,‘oJo(E)»’) = E)J ® e_%glz +1 X E)J
Agofo(E/\g—w) = Ekg_)‘/ ® e%fflz + &2 ® Ekg—)ﬂ
Asoio(Erg) = Exg @ €2 +1® g (7.7)
Agys(Hip) = Hip® €72+ 1® Hip — E1 ® Epe 2%
_% Z EA, ® E)Lgi)xreigalz.

M =eitesz,e1tes

Due to the ‘matreshka’ effect, the second Jordanian twist can be appligXox, ,

@7
(Agar) EoJo i (Agar) J1&EoJo

This leads to the following deformations:
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o the subalgebr#; acquires the well known twisted form with the defining coproducts
Aoy (Hzs) = Haa @ € 7%+ 1® Hzy
Apenr(Ezea) = E3ea @ €% +1® E3iq (7.8)
Apgor(Ex) = Ex ® €% + 1@ Ey k=34

o the subalgebraL'?).,,, rests untouched,

(L) g0s0 = (L) 116016

e foreach{r =e¢; ¢, | i =1, 2; k = 3, 4} the following substitution is performed in the
coproducts for the generatoFs :

E ® fo1) — E, @€ f(01)
e iNAjg(Ey) foreachih =e; — e | i = 1, 2; k = 3, 4} the additional term appears,
(—D)** Hape Vo2 @ Eg 1o €7

(here3=4,4=73);
o for the Cartan generatdi,, the coproduct becomes

_ _3
Ages(Hi2) = Ho® € "2 +1Q Hip— E1 @ Epe 272

1,3 1y 3

—3E113® Ep 3627722 — HyyE1,3® Epyg€ 277270

1 lou—3012 —Lo34—3012
—5E144® E2_4€27%72°2 + H3E144 @ Ep43€ 27372
13 g3

—%E1,4 ® Epige 27372712 — %E1,3 ® Epqe 27372912,

The last twisting (that completes the ch#in),

D,
(Agar) \1150‘/0 — (Agar) Bl<0 (79)

does not change the coproducts for the genergfgrs | i = 1, 2; k = 3, 4}. It produces the
ordinary transformation fof.*?,

Ap, o (Haa) = A 010 (Haa) + E3 @ Eq€ 2%
Ap, ,(E3) = E3® e 2% +1Q Es
Ap, o(Eq) = E4® @103 4 gf3 ® Ea.
The generatorg, Ex, E;— andHy, are non-trivially twisted by the transformation (7.9),
Apo(ED) = A ey (E1) — E1va® E4€ 27 2% — E3 @ Ep g8 2%
Apyo(E2) = Aoy (E2) — Epsg @ E4e 27475902 — E3g @ Epyge” 2%
Ap, o(E1-3) = Ajg0(E1-3) + 2E1 ® oo bon
e
A, o(E2_3) = Ajgy0(Eo—3) + 2E> ® Eaeowtion
_ Epry® E26b 10 _ QB e @ EyEpyge i
Ap, o(E1-4) = A jgoio(E1-4) + 2E3 ® Eje 2% — E3® E1448 % +2E3® EqEpsae %%
Ap, o(E2—4) = Ajpggse(E2-4) + 2E3€°2 @ Eje b0

3
—E3€72 @ Ep44€ % + 2E36”? ® E4Ep436™ 2%
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Ap, o(H12) = A jig05o(H12) + (E143® E2Ea+ E3E1 ® E24)1® L

3 3
—(E1 + E144E3) ® E213E4€ " 272 + S E143® Egia(Eq)’e 2772

3

—E144E3 ® Exe 2712 + %E1+4(E3)2 ® E2+4e‘%"34‘%"12.
These relations complete the description of the twisted Hopf algef& s, ,. Using

the explicit expressions (7.4) for the chain factors one can reconstruct the Hopf algebra
U (s0(9))5,., containing(Ag") s, _,. Both of them are triangular with the universal element

R6k<0 = (q)glcbjlq)foq)Jo)Zl(q)flqjjlcbfoq)]o)_l'
The deformation parameter can be introduced so that the classizatrix
T = Hip AN Exvp+ Hag A Ezsq+ Ey N Eo+ E3 N Ey

+%(E1—3 N Eziz+ E1va A Ez 3+ E1 4 AN Ezig+ Erva N Eo_y)
determines the Lie—Poisson structure that was quantized explicitly by the chain otAwists

8. Conclusions

Chains of twists provide a rich variety of new quantizations for a certain class of Lie algebras
described in proposition 2. As was demonstrated in [17] extended twists can be accompanied
by the special Reshetikhin twists which ‘rotate’ the roots of the carrier subalgebras for the
Jordanian factors. It is easy to check that such ‘rotations’ can also be applied in the case of
chains. The corresponding additional factdis = exp((H,s+ + 6(H,i1)") ® 0§ ) (here
(H)Lé—l)J' is orthogonal tof;; and H;:-1) can be included in each,_,. It can be shown that
though the factorb.,_, must be changed its invariance properties with respeg}, tcan be
conserved. In this context the chains are flexible and their multiparametric versions can be
easily constructed.

The deformation parameters can be introduced in chains by rescaling the generators of the
subalgebra@;. It must be stressed that eal6hcan be rescaled separately with an independent
variable&,. When all these rescaling factors are proportional to the deformation parameter
£, i.e.& = &g, then in the classical limit the parametegsappear as the multipliers in the
classical-matrix (compare with (5.27)):

o= . nk(ng AL+ Y Ly A L,\g_,\/).

k=0,1,....p Nem

The mechanisms described above can be combined together both leading to the
multiparametric versions of chains.

One of the consequences of proposition 2 is that for a large set of universal enveloping
algebras (includingd, B and D series of classical algebras), classicahatrices of the type
(5.27) exist. For the special casegt si/(N) they were first presented in [8]. As we have
shown above they originate from the specific properties of extended Jordanian twists, the
possibility to form chains for certain types of universal enveloping algebras.
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